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ABSTRACT
There exists considerable interest in the probabilistic modeling of economic variables
to compute financial estimates with the least possible uncertainty. Most studies are
based on symmetric probability distributions, specifically on the normal distribution;
however, empirical evidence indicates that the probability distributions of variables
such as economic returns present a certain degree of skewness. Therefore, the main
issue in this paper is to propose a probability distribution which provides a good
fit to economic returns. In particular, this article focuses on the analysis of the
economic returns of the Mexican S&P�BMV IPC Index, and it is found that the
skew-t distribution might be a plausible model for this variable. A new probability
property of the skew-t family of distributions is introduced here, and it is used to
propose a procedure for testing the skew-t distribution hypothesis. The results of a
Monte Carlo simulation study conducted in order to study the power properties of
this test are also presented.
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1. Introduction

The parametric statistical inference relies on the assumption that the data constitute
a random sample from a population that has a given probability distribution, which
usually depends on unknown parameters. In several cases, parametric inferences
are valid only if the probability distribution used really explains the probabilistic
behavior of the data. The financial theory is mostly based on the assumption of
normality; however, there exists empirical evidence which points out that random
variables such as economic growth rates, stock returns and different stock market
indexes of the world, among others, do not follow a normal distribution ([13, 16]).
Frequency histograms, which are constructed with observations of these random
variables, indicate that the probability distributions of these variables are asymmetric
and/or with tails heavier than the normal distribution tails.

In the economic and financial fields it is important to identify the probability
distribution of such variables as in these areas it is very important to make accurate
predictions, that is, with the least possible uncertainty. Therefore, many authors have
tried to identify valid probability models for the returns of the big stock markets
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worldwide ([15, 14, 2]).

The Mexican S&P�BMV IPC Index measures the efficiency of the stocks with
greater economic liquidity listed in the Mexican Stock Exchange. It provides a wide
and representative index which is easily replicable and covers the Mexican stock mar-
ket. A number of authors have studied this index by considering different approaches
such as the study of extreme variations based on the Pareto-Levy distribution ([8]),
and the dynamic volatility movements and market risk of the high-frequency Mexican
IPC ([7]).

Here, we propose the use of the skew-t distribution ([5]) for modeling the proba-
bility behavior of the returns of representative indexes of exchange stock markets. In
particular, we are interested in modeling the returns registered in time periods with
important economic variations such as periods of new governments, crisis or events
that have had a significative impact in the Mexican economy. The economic return is
defined as the profit after a certain period of time, and it is calculated as the ratio
r = (final price− initial price)/(initial price).

Two data sets containing the weekly returns of the Mexican S&P�BMV IPC
Index registered in two important economic periods are considered here. The first
data set (see Table 3 and Figure 2) contains the weekly returns registered from
January 2nd, 2008 to December 31st, 2009, which was a period of financial crisis at an
international level that directly affected the Mexican economy. The second data set
contains the weekly returns of the Mexican S&P�BMV IPC Index from December
2nd, 2018 to July 12th (see Table 6 and Figure 5). This period of time includes both
the beginning of President Andrés Manuel López Obrador’s rule and part of the
global sanitary crisis because of the COVID-19 pandemic.

Figure 1 presents the empirical distribution function (ECDF) and three different
fitted probability distributions to these data sets: the normal, skew-normal and
skew-t distribution. It is observed that the normal and skew-normal distribu-
tions have a lack of fit in both cases; meanwhile, the skew-t distribution seems
to provide a good fit. Hence, in order to formally test if the skew-t distribution
provides a good fit to a data set, here we introduce a new property of this family of
distributions and use it to propose a procedure for testing goodness of fit of this model.

1.1. The skew-t distribution

The skew-normal distribution ([3]) is a continuous probability distribution that ex-
tends and generalizes the normal distribution by using an additional shape parameter
that regulates the asymmetry. Let ϕ and Φ be the probability density function (pdf)
and the cumulative distribution function (cdf) of a standard normal random variable,
respectively. It is said that the random variable Z0 follows a skew-normal distribution
with slant parameter α ∈ R, denoted as Z0 ∼ SN(α), if its pdf is given by:

fZ0
(z;α) = 2ϕ(z)Φ (αz) , −∞ < z < ∞. (1)

Let ξ ∈ R and ω ∈ R+, if Z0 ∼ SN(α) then the random variable Y0 = ξ + ωZ0 is said
to have a skew-normal distribution with location, scale and slant parameters ξ, ω and
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Figure 1. Fitted distributions to the weekly S&P�BMV IPC returns (a) from January 2nd, 2008 to De-
cember 31st, 2009 and (b) from December 2nd, 2018 to July 12th, 2020.

α, respectively, and it is denoted as Y0 ∼ SN(ξ, ω2, α).

The skew-t family of distributions ([5]) emerges from the skew-normal distribution.
The main characteristic of this family is its flexibility for modeling asymmetric data
which have heavier tails than those of the normal distribution. The standard Cauchy
distribution, the Student’s t-distribution, the normal and skew-normal distributions
are included within this family of distributions.

Let Z = Z0√
V

be, where Z0 ∼ SN(α) and V ∼ χ2
ν/ν are independent random

variables, χ2
ν denotes the Chi-square distribution with ν degrees of freedom. The ran-

dom variable Z follows a skew-t distribution with slant parameter α and ν degrees of
freedom and its pdf is given by:

t(z;α, ν) = 2t(z; ν)T

(
αz

√
ν + 1

ν + z2
; ν + 1

)
, z, α ∈ R, ν > 0, (2)

where t(z; ν) represents the pdf of the Student-t distribution with ν degrees of
freedom and T (∗; ν + 1) denotes the cdf of the Student’s t distribution with ν + 1
degrees of freedom.

Some properties of this density are:

(1) If α = 0, equation (2) reduces to the pdf of the Student’s t distribution with ν
degrees of freedom.

(2) If ν → ∞, equation (2) converges to the pdf of the SN(α) distribution.
(3) The random variable Z2 ∼ F (1, ν), where F (ν1, ν2) denotes the Snedecor distri-

bution with ν1 and ν2 degrees of freedom.

The family of distributions with pdf given in (2) can be extended by including a
location parameter ξ ∈ R and a scale parameter ω ∈ R+, considering the transforma-
tion Y = ξ + ωZ. The random variable Y is said to have a skew-t distribution with
parameters (ξ, ω2, α, ν) and is denoted as Y ∼ ST (ξ, ω2, α, ν).
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Let

bν =

√
νΓ

(
1
2(ν − 1)

)
√
πΓ

(
1
2ν

) , ν > 1,

and δ =
α√

1 + α2
, δ ∈ (−1, 1).

The first moments of Y are:

µ = E {Y } = ξ + ωbνδ, ν > 1, (3)

σ2 = var {Y } = ω2

[
ν

ν − 2
− (bνδ)

2

]
= ω2σ2

z , ν > 2, (4)

γ1 =
bνδ

σ
3/2
z

[
ν(3− δ2)

ν − 3
− 3ν

ν − 2
+ 2(bνδ)

2

]
, ν > 3, (5)

γ2 =
1

σ4
z

[
3ν2

(ν − 2)(ν − 4)
− 4(bνδ

2)ν(3− δ2)

ν − 3
+

6(bνδ)
2ν

ν − 2
− 3(bνδ)

4

]
− 3, ν > 4. (6)

The coefficients γ1 and γ2 represent the third and fourth standardized cumulants
of Y , respectively. The range of γ1 is (−4, 4) when ν > 4. For ν ≤ 3, γ1 does not
exist. At least one of the tails of the distribution gets heavier when ν → 0, given the
connection with the Cauchy distribution and the Student’s t- distribution. If ν → 4+

then the range of γ2 is [0, ∞).

This article is organized as follows. A goodness of fit test for the skew-t distribution
hypothesis is introduced in Section 2. The results of a Monte Carlo simulation study
on the power properties of the proposed methods for testing the skew-t distribution
are presented in Section 3. In Section 4, the data sets containing weekly returns of
the Mexican S&P�BMV IPC Index are further analyzed. Finally, in Section 5 some
conclusions are established.

2. Methodology

This section presents a statistical test for the problem of testing the skew-t distribution
hypothesis based on a random sample.

2.1. A new property of skew-t distributions

Consider the following result.

Theorem 2.1. Let Z be a random variable such that Z ∼ ST (0, 1, α, ν), then the
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random variable Y 0, defined as

Y 0 =

{
Z with probability 1/2,
−Z with probability 1/2,

(7)

follows a Student’s t distribution with ν degrees of freedom.

Proof. Y 0 is a mixture of two random variables, then its pdf is given by

fY 0(y) =
1

2
fZ(y) +

1

2
f−Z(y). (8)

Notice that the cdf of −Z is F−Z(z) = 1 − FZ(−z). Then f−Z(z) = d
dzF−Z(z) =

fZ(−z). Hence, by (2),

fZ(−z) = 2t(z; ν)T

(
(−α)z

√
ν + 1

ν + z2
; ν + 1

)
, (9)

since the Student’s t distribution is a symmetric function. From equation (9) it follows
that −Z ∼ ST (0, 1, −α, ν). Therefore, the pdf of the random variable Y 0 is given by:

fY 0(y) = t(y; ν)

[
T

(
αy

√
ν + 1

ν + y2
; ν + 1

)
+ T

(
(−α)y

√
ν + 1

ν + y2
; ν + 1

)]
.

Now, notice that T (−a; ν) = 1 − T (a; ν), a ∈ R, where T denotes the cdf of the
standard Student’s t distribution with ν degrees of freedom. Therefore,

fY 0(y) = t(y; ν)

[
T

(
αy

√
ν + 1

ν + y2
; ν + 1

)
+ 1− T

(
αy

√
ν + 1

ν + y2
; ν + 1

)]

= t(y; ν),

(10)

that is, Y 0 follows a standard Student’s t distribution.

If Y ∼ ST (ξ, ω2, α, ν), by the previous Theorem, the random variable Y 0 defined
in (7) follows a standard Student’s t distribution with Z = (Y − ξ)/ω.

2.2. A test for skew-t distributions based on a data transformation

Let Y1, . . . , Yn be a random sample of size n from the ST (ξ, ω2, α, ν) distribution. If

the parameters ξ and ω are replaced by consistent estimators ξ̂ and ω̂, then by the
above result, the random variables

Y 0
i =

{
Z ′
i with probability 1/2,

−Z ′
i with probability 1/2,

(11)

follow approximately a Student’s t distribution for large sample sizes, where

Z ′
i =

Yi − ξ̂

ω̂
, i = 1, . . . , n. (12)
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Let X1, . . . , Xn be a random sample of size n coming from a continuous population.
For testing the null hypothesis

H0 : X1 . . . , Xn ∼ ST (ξ, ω2, α, ν), with unknown values of ξ, ω2, α, ν, (13)

versus H1 : not H0, for large sample sizes we propose to use Anderson-Darling test
([1]) for testing the null hypothesis

H ′
0 : X

′
1, . . . , X

′
n ∼ Student’s t distribution, (14)

where

X ′
i =

{
Xi−ξ̂
ω̂ with probability 1/2,

−Xi−ξ̂
ω̂ with probability 1/2,

i = 1, . . . , n. (15)

Anderson-Darling test rejects H ′
0 at a test size γ ∈ (0, 1) if statistic:

A2
n = n

∫ ∞

−∞

[T (x)− Fn(x)]
2

T (x)[1− T (x)]
dT (x) (16)

is larger than A2
1−γ , where T is the cdf of the Student’s t distribution, Fn(y) is the

ECDF of X ′
1, . . . , X

′
n and the cutoff point A2

1−γ is the 100(1 − γ)% quantile of the

null distribution of A2
n. The distribution of A2 under H0 depends on the hypothesized

distribution, then A2
1−γ can be obtained by parametric bootstrap.

If H ′
0 is rejected at a test size γ ∈ (0, 1) then H0 in (13) is rejected at the same test

size.
Remark. A bootstrap version of Anderson-Darling test is also considered here for

testing (13). The test statistic compares the ECDF of X1, . . . , Xn and the fitted skew-t
distribution to X1, . . . , Xn.

3. Results and Discussion

In order to estimate the nominal test size and power of the proposed test (W �) and
the Anderson-Darling test (W ), a Monte Carlo simulation study was performed under
the following conditions. Samples of sizes n = 50, 100, 500 were simulated and the
nominal test size was fixed at α� = 0. 05. The size and power of the W and W � tests
were estimated by using 1000 Monte Carlo samples. In all cases, 200 bootstrap samples
were simulated. The numbers of Monte Carlo and bootstrap samples considered are
small because the algorithms used in this study are computationally expensive. The
calculations were done in R ([17]). The sn package ([4]) of R was used to compute
parameter estimates for the skew-normal and skew-t distributions.

For the estimation of the test sizes, different values were used for the slant param-
eter α ∈ [−20, 20] and the degrees of freedom ν > 1. The values of the location and
scale parameters were set at 0 and 1 because the two tests are invariant under changes
in these parameters, and when these parameters are estimated by using equivariant
estimators of location and scale (as are the maximum likelihood estimators), the
sampling distributions of the statistics of the empirical distribution function do not
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depend on the real values of these parameters ([9]).

Table 1. Estimated size of the tests for different values
of α and ν = 3, 5, 8, 12 with α� = 0. 05.

α ν n=50 n=100 n=500
W W � W W � W W �

20 3 0.03 0.02 0.2 0.2 0.06 0.03
15 3 0.02 0.02 0.02 0.02 0.05 0.05
10 3 0.02 0.01 0.02 0.02 0.06 0.04
5 3 0.01 0.04 0.03 0.03 0.05 0.04
2 3 0.01 0.02 0.04 0.03 0.06 0.04
0 3 0.02 0.02 0.05 0.04 0.06 0.04
-2 3 0.01 0.03 0.03 0.03 0.06 0.02
-5 3 0.01 0.02 0.03 0.02 0.05 0.04
-10 3 0.02 0.02 0.02 0.02 0.05 0.05
-20 3 0.03 0.03 0.02 0.02 0.05 0.04
20 5 0.03 0.03 0.02 0.02 0.06 0.04
15 5 0.03 0.02 0.03 0.02 0.04 0.04
10 5 0.01 0.02 0.02 0.02 0.05 0.04
5 5 0.01 0.03 0.02 0.02 0.05 0.03
2 5 0.02 0.02 0.03 0.03 0.05 0.03
0 5 0.03 0.03 0.04 0.03 0.06 0.03
-2 5 0.01 0.03 0.04 0.03 0.07 0.03
-5 5 0.01 0.03 0.02 0.03 0.04 0.03
-10 5 0.02 0.03 0.02 0.03 0.04 0.04
-20 5 0.03 0.03 0.03 0.03 0.08 0.05
20 8 0.03 0.03 0.04 0.03 0.05 0.04
15 8 0.02 0.03 0.04 0.03 0.05 0.03
10 8 0.01 0.03 0.03 0.03 0.08 0.04
5 8 0.01 0.02 0.03 0.04 0.04 0.03
2 8 0.02 0.03 0.04 0.03 0.06 0.03
0 8 0.03 0.03 0.04 0.03 0.05 0.03
-2 8 0.03 0.04 0.04 0.02 0.05 0.03
-5 8 0.02 0.03 0.02 0.03 0.05 0.02
-10 8 0.01 0.03 0.03 0.03 0.04 0.03
-20 8 0.03 0.03 0.05 0.03 0.08 0.03
20 12 0.04 0.03 0.05 0.03 0.05 0.03
15 12 0.02 0.03 0.04 0.04 0.03 0.04
10 12 0.01 0.03 0.02 0.03 0.05 0.03
5 12 0.01 0.04 0.02 0.02 0.05 0.04
2 12 0.02 0.03 0.04 0.03 0.05 0.03
0 12 0.02 0.03 0.04 0.03 0.06 0.03
-2 12 0.02 0.04 0.04 0.03 0.05 0.03
-5 12 0.01 0.04 0.02 0.03 0.05 0.03
-10 12 0.01 0.02 0.04 0.04 0.05 0.02
-20 12 0.03 0.03 0.04 0.03 0.10 0.03

The powers of the W and W � tests were estimated under the following alternative
distributions.

(1) N(0, 1): standard normal.
(2) Cauchy(0, 1): standard Cauchy.
(3) Logistic(0, 1): standard logistic.
(4) Beta(a, b): beta with parameters a and b.
(5) Uniform(0, 1).
(6) Laplace(0, 1): standard Laplace.
(7) Gamma(a, b): Gamma with shape and scale parameters a and b. When a = 1

and b = 1 the density of the standard exponential distribution is obtained: Exp
(1). When a = 4/2 and b = 2 the chi-square distribution with 4 degrees of
freedom is obtained, and it is denoted as χ2

4.
(8) Gumbel(0, 1): standard Gumbel.

7
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(9) sLaplace(0, 1, λ): standard asymmetric Laplace with slant parameter λ ∈ R and
probability density function (pdf) given by:

fX(x) =

{
λe−λx

1+λ2 x ≥ 0,
λex/λ

1+λ2 x < 0.

(10) Log-normal(µ, σ): Log-normal with location parameter µ ∈ R and scale param-
eter σ > 0.

(11) Weibull(λ, k): Weibull with scale parameter λ > 0 and shape parameter k > 0.
(12) GP(λ, 1): generalized Pareto distribution with shape parameter λ ∈ R and pdf

given by:

fX(x) = (1 + λx)−(1/λ+1) ,

where x ≥ 0 for λ ≥ 0 and 0 ≤ x ≤ −1 for λ < 0.
(13) DGP(α): generalized Double Pareto. The following result was used to generate

random numbers from this distribution.
Let X and Y be independent random variables with GP(α, 1) distribution,

then the variable Z = X − Y has a generalized Double Pareto distribution with
parameter α.

Note that in the list of distributions the N(0, 1) and Cauchy (0, 1) distributions were
included, but they belong to the family of skew-t distributions for certain values of
the skew-t parameters.

Table 2. Estimated power of the tests with α� = 0. 05.

Alternative γ1 γ2 n=50 n=100 n=500
W W � W W � W W �

Symmetric distributions
Beta(0.5, 0.5) 0 -1.5 0.91 0.60 1 0.99 1 1
N(0, 1) 0 0 0.02 0.04 0.06 0.04 0.07 0.03
Cauchy(0, 1) � � 0.02 0.05 0.02 0.07 0.01 0.04
Logistic(0, 1) 0 1.2 0.02 0.04 0.05 0.04 0.05 0.05
Uniform(0, 1) 0 1.8 0.28 0.18 0.96 0.78 1 1
Laplace(0, 1) 0 3 0.05 0.05 0.12 0.07 0.63 0.33

Skew distributions
sLaplace(0, 1, 3) -1.96 5.8 � 0.29 � 0.80 � 1
sLaplace(0, 1, 1.5) -1.4 4.34 0.07 0.06 0.30 0.07 0.99 0.29
Beta(1, 3) 0.75 0.10 0.15 0.04 0.17 0.08 0.17 0.21
Gamma(4, 1) 1 1.5 0.01 0.03 0.04 0.04 0.15 0.04
Gumbel(0, 1) 1.14 2.4 0.01 0.04 0.03 0.05 0.09 0.04
sLaplace(0, 1, 0.7) 1.27 4.12 0.06 0.05 0.22 0.07 0.95 0.21
χ2
4 1.41 3 0.01 0.04 0.02 0.04 0.16 0.08

Log-normal(0, 0.5) 1.75 5.9 0.01 0.03 0.02 0.03 0.10 0.05
sLaplace(0, 1, 0.5) 1.8 5.33 0.24 0.09 0.84 0.17 1 1
Exp(1) 2 6 0.18 0.06 0.25 0.08 0.63 0.39
Gamma(0.5, 1) 2.83 12 � 0.13 � 0.25 � 1
Weibull(0.75, 1) 3.1 16.03 � 0.10 0.54 0.17 0.07 0.97
GP(0.15, 1) 3.5 30.5 0.17 0.06 0.26 0.09 0.69 0.28
Log-normal(0, 1.5) 33.47 10075.25 � 0.07 � 0.07 � 0.18
GP(0.5, 1) � � � 0.07 � 0.07 � 0.15
DGP(0.4) � � 0.04 0.06 0.08 0.08 � 0.17
DGP(2.5) � � � 0.11 � 0.20 � 0.41
� Undefined values.

Table 1 presents the estimated test sizes for the W and W �. In general, both tests
preserve the nominal size for samples of sizes n=50 and 100, but for samples of size

8
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Table 3. Weekly S&P�BMV IPC returns from January 2nd, 2008 to December 31st, 2009.

-0.0132 0.0227 -0.0021 -0.0063 0.0432 0.0036 -0.0143 0.0369 0.0427 -0.0644
0.0036 0.0229 0.0467 -0.0028 -0.0393 0.0167 0.0402 -0.0102 0.0104 0.0165
-0.0115 0.0408 0.0149 0.0345 0.0882 -0.0162 -0.0170 0.0076 -0.0466 0.0220
0.0239 0.0098 0.0320 -0.0303 0.0959 -0.0301 0.0157 0.0828 -0.0190 0.0305
0.0488 -0.0038 0.1407 -0.0397 -0.0312 -0.0543 -0.0523 0.0447 0.0112 -0.0480
0.0651 -0.0649 0.0327 0.0132 0.0396 0.0659 -0.0211 0.1251 -0.0670 -0.0153
-0.0284 0.2058 -0.1641 0.0154 -0.1334 -0.1012 -0.0042 0.0107 -0.0142 -0.0158
-0.0217 -0.0170 0.0099 0.0057 -0.0047 -0.0385 0.0186 -0.0259 -0.0327 -0.0081
0.0289 -0.0236 -0.0256 0.0292 -0.0132 0.0265 0.0046 -0.0148 -0.0247 0.0158
-0.0079 0.0486 0.0349 0.0008 0.0153 -0.0101 -0.0209 0.0273 0.0208 -0.0415
0.0749 0.0257 -0.0700 0.0140

n=500 it is observed that the size estimated with the W test sometimes exceeds
the nominal size, especially in cases where the slant parameter is large and/or the
degrees of freedom are greater than 3. On the other hand, the test W �, in gen-
eral, has a good control of the type I error probability when the sample size is n = 500.

Table 2 presents the estimated powers of the tests for the different alternative
distributions considered, which were classified as symmetric or asymmetric and
ordered according to the values of their skewness (γ1) and excess kurtosis (γ2)
coefficients. It is observed that both tests under study have high power for cases
where the alternative distributions have a bounded support. For example, the power
increases as the sample size increases under the Beta(0.5, 0.5) distribution and the
Uniform(0, 1) distribution.

For samples of size n=100, the W test has high power against the asymmetric
Laplace distribution and in general versus alternative distributions with coefficient
γ2 < 30. A similar observation is made for the W � test; however, in this case the
power increase is not very large, compared to the case when n=50.

For samples of size 500, the W test is powerful versus most alternative distributions
considered. It is rather sensitive against the Laplace distributions, both symmetric
and asymmetric, or related distributions such as the exponential distribution.

4. Applications

In this section we analyze the data sets discussed in the Introduction section.

In order to verify the assumption of independence among the observations, the
Box-Pierce test ([6]) was applied by using the Box.test function of the stats package
([18]) of R ([17]).

The following probability distributions were fitted to each data set. The skew-t
ST (ξ, ω2, α, ν), the normal N(µ, σ2), the skew-normal SN(ξ, ω2, α) and the Laplace
Lap(µ, b). Parameter estimates of the skew-t and skew-normal distributions were
calculated with the functions st.mpl and sn.mpl of the sn package ([4]) of R ([17]).

Different goodness-of-fit tests were applied to test each of the fitted probability
distributions. The Shapiro-Wilk test was used for testing normality. The bootstrap

9
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Figure 2. Weekly S&P�BMV IPC returns from January 2nd, 2008 to December 31st, 2009.

Table 4. Estimated parameters of different distribu-
tions fitted to the weekly S&P�BMV IPC returns
from January 2nd, 2008 to December 31st, 2009.

Distribution Estimates
ST (ξ, ω2, α, ν) (-0.0047, 0.03222, 0.2063, 3.1754)

N(µ, σ2) (0.0023, 0.04902)
SN(ξ, ω2, α) (-0.0347, 0.06142, 1.1852)
Lap(µ, b) (-0.0006, 0.0346)

Anderson-Darling test, studied by González-Estrada and Cosmes-Mart́ınez ([10]), was
used to test the skew-normal distribution. The Anderson-Darling test, proposed by
González-Estrada and Villaseñor A. ([11]) implemented in the function laplace test
of the goft package ([12]), was used to test the Laplace distribution. The tests
proposed in Section 2 were applied to test the skew-t distribution. The R script for
implementing these tests is provided in the Appendix. For these two tests and for the
test for the skew-normal distribution, 500 bootstrap samples were used to estimate
the distribution of the statistic and calculate the probability value.

For practical purposes, the used tests were denoted as follows:

BP : Box-Pierce test.
SW : Shapiro-Wilk test.
ADN : Anderson-Darling test for the skew-normal distribution.
ADLP : Anderson-Darling test for the Laplace distribution.
W : Anderson-Darling test for the skew-t distribution.
W 
: Anderson-Darling test for the skew-t distribution with transformed data.

Figure 3(a) presents a frequency histogram of the returns from January 2nd,
2008 to December 31th, 2009. Note that the distribution is leptokurtic with a slight
elongation on the right tail. The estimated skewness and excess kurtosis coefficients
are 0.4364 and 3.5761, respectively.

Table 5 presents the results of the independence and goodness of fit tests applied
to this data set. Notice that the distribution of the data is neither normal nor
skew-normal since the corresponding null hypotheses were rejected by using the SW
and ADN tests. The lack of fit with these distributions is observed in Figure 4(a).
On the other hand, the skew-t distribution hypothesis is not to rejected, which agrees

10
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Figure 3. Frequency histograms of (a) the weekly returns from January 2nd, 2008 to December 31st, 2009
and (b) the weekly returns from December 2nd, 2018 to July 12th, 2020.
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Figure 4. Fitted distributions to the weekly S&P�BMV IPC returns from January 2nd, 2008 to December
31st, 2009.

with the evidence provided by Figure 4(a), where it is observed that the fitted skew-t
distribution is close to the empirical distribution function (ECDF) of the observa-
tions. Note that the Anderson-Darling test for the Laplace distribution rejects the
corresponding null hypothesis. The fitted Laplace distribution is shown in Figure 4(b).

The second data set includes the weekly S&P�BMV IPC returns from December
2nd, 2018 to July 12th, 2020, with a total of 85 observations. The estimated skewness
and excess kurtosis coefficients are 0.3044 and 1.4889, respectively. The corresponding
frequency histogram is shown in Figure 3(b).

Table 5. Results of the different tests applied to the weekly
S&P�BMV IPC returns from January 2nd, 2008 to December 31st,
2009.

Test BP SW ADN ADLP W W �

Statistic 3.3302 0.9366 1.4081 1.6155 0.1965 0.4001
p-value 0.0680 8.771e-05 0 0.0214 0.618 0.228

11
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Table 6. Weekly S&P�BMV IPC returns from December 2nd, 2018 to July 12th, 2020.

0.0034 -0.0426 0.0085 -0.0245 0.0254 -0.0365 0.0784 0.0086 -0.0017 -0.0511
0.0374 0.0509 0.0006 0.0014 0.0275 -0.0266 -0.0198 -0.0652 -0.0503 -0.0001
0.0606 -0.0043 0.0137 0.0015 -0.0155 -0.0146 0.0245 0.0038 0.0069 -0.0069
0.0037 0.0552 -0.0216 -0.0153 0.0036 -0.0033 -0.0026 0.0099 0.0035 0.0016
0.0043 0.0148 -0.0133 0.0172 0.0008 0.0020 0.0678 0.0118 -0.0241 0.0154
-0.0164 -0.0251 -0.0256 -0.0195 0.0043 -0.0093 0.0102 -0.0069 0.0101 0.0034
-0.0206 0.0063 -0.0159 -0.0158 -0.0117 0.0196 -0.0063 0.0390 0.0234 -0.0033
-0.0139 -0.0237 -0.0271 0.0166 -0.0032 -0.0163 0.0034 -0.0143 0.0159 0.0251
0.0240 0.0009 0.0039 -0.0139 -0.0025
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Figure 5. Weekly S&P�BMV IPC returns from December 2nd, 2018 to July 12th, 2020.

Table 7. Estimated parameters of different distribu-
tions fitted to the weekly S&P�BMV IPC returns
from December 2nd, 2018 to July 12th, 2020.

Distribution Estimates
ST (ξ, ω2, α, ν) (-0.0027, 0.01752, 0.1040, 3.6134)

N(µ, σ2) (-0.0007, 0.02442)
SN(ξ, ω2, α) (-0.0194, 0.03082, 1.1877)
Lap(µ, b) (8e-04, 0.0176)
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Figure 6. Fitted distributions to the weekly S&P�BMV IPC returns from December 2nd, 2018 to July
12th, 2020.
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Table 8. Results of the different tests applied to the weekly returns
of the S&P�BMV IPC from December 2nd, 2018 to July 12th, 2020.

Test BP SW ADN ADLP W W �

Statistic 0.0371 0.9637 0.9136 0.5434 0.2854 0.1924
p-value 0.8471 0.0172 0.004 0.4529 0.238 0.8120

From the results presented in Table 8 and considering a test size equal to 0.05, we
have that the independence hypothesis is not rejected by Box-Pierce test. Both the
normal and skew-normal distribution hypotheses are rejected, which agrees with the
evidence provided in Figure 6(a), which depicts the ECDF of the observations and the
fitted normal and skew-normal and skew-t distributions. It is observed that the fitted
normal and skew-normal distributions are very similar, but the skew-t distribution
provides a better fit around the center of the data set. On the other hand, the skew-
t distribution hypothesis is not rejected with the W and W � tests. Note that even
though the Laplace distribution hypothesis is not rejected, it is observed in Figure
6(b) that the skew-t distribution provides a better fit to this data than the Laplace
distribution.

5. Conclusions

In this article, the use of the skew-t probability distribution has been proposed for
modeling the returns of the S&P�BMV IPC Index. In order to formally assess
if this model provides a good fit to real data sets containing a realization of a
random sample, two goodness-of-fit tests (W and W ∗) have been proposed for the
skew-t distribution hypothesis when parameters are unknown. The analysis of two
real data sets containing weekly returns of the Mexican Exchange Market Index,
lead us to consider the skew-t distribution as a plausible probability model for such
variable. Monte Carlo simulation results indicate that both tests in general preserve
the nominal test size under the studied conditions. The W test is in general more
powerful than the W � test against the considered alternative distributions.
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Appendix A. Anderson-Darling test for skew-t distributions

#W test

install.packages("sn")

library(sn)

#Anderson-Darling statistic

AD_stat2<- function(x){

n<- length(x) # sample size

w<- st.mple(y = x, opt.method = "nlminb")$dp

s<- sort(x)

14
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theop<- pst(s, w[1], w[2], w[3],w[4])

ad_calc<- - n - sum((2*(1:n)-1)*log(theop) +

(2*n+1-2*(1:n))*log(1-theop))/n

return(ad_calc)

}

# The following function returns 1 if Ho is rejected

# and 0 otherwise.

# Arguments

# x: data (vector)

# B: number of bootstrap samples

# size: test size

AD_test2 <- function(x, B, size)

{

n<- length(x)

ad_calc <- AD_stat2(x)

w <- st.mple(y=x,opt.method="nlminb")$dp

#bootstrap

AD_dist <- replicate(B, AD_stat2(rst(n, xi = w[1],

omega=w[2], alpha = w[3],nu=w[4])))

orden<- sort(AD_dist)

cuant<- B*(1-size)

k_alpha <- orden[cuant]

return(ifelse(ad_calc > k_alpha, 1, 0))

}

Appendix B. Test for skew-t distributions based on transformed data

#W* test

install.packages("sn")

library(sn)

#Anderson-Darling statistic

ADstat <- function(x){

n<- length(x) # sample size

w<- st.mple(y=x,opt.method="nlminb",symmetr = TRUE)$dp

s <- sort(x)

theop <- pst(s,w[1],w[2],0,w[3])

ad_calc <- -n- sum((2*(1:n)-1)*log(theop)

+ (2*n+1-2*(1:n))*log(1-theop))/n

return(ad_calc)

}

ADtest<- function(x, B, size)

{

n<- length(x)

ad_calc<- ADstat(x)

w<- st.mple(y=x,opt.method="nlminb",symmetr = TRUE)$dp

AD_dist <- replicate(B, ADstat(rst(n,w[1],w[2],0,w[3])))

orden <- sort(AD_dist)

cuant <- B*(1-size)

15
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k_alpha <- orden[cuant]

return(ifelse(ad_calc > k_alpha, 1, 0))

}

#Anderson-Darling test based on a data transformation

# The following function returns 1 if Ho is rejected

# and 0 otherwise.

# Arguments

# x: data (vector)

# B: number of bootstrap samples

# size: test size

test<-function(x,B,size) {

n<-length(x)

estimation<-st.mple(y = x, opt.method = "nlminb")$dp

x1<-(x-estimation[1])/estimation[2]

#set.seed(1) use for p-value calculation

A<-rbinom(n,1,0.5)

D<-matrix(NA, ncol = 1, nrow = n)

for(i in 1:n ){

if (A[i]==1 ) {D[i]<-x1[i]} else D[i]<--(x1[i])}

return(ADtest(D,B,size))

}
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